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I. INTRODUCTION 

One very important function of the Interior Ballistics Division of the 
BRL is to provide simulations of the interior ballistic performance of 
weapons 1 ' 2• With knowledge of the performance of a known system, the 
performance of a slightly modified system can be simulated. This method of 
"ballistic similitude" has been used successfully in the past and generally 
provides projectile displacement, velocity, and acceleration, together with 
pressure data, all as a function of time, and to an accuracy that is 
satisfactory in most cases. 

With the advent of more sophisticated projectile payloads, more 
complexity to propelling charge design, and newer and more exotic propellant 
compositions, there exists a need to refine these ballistic simulations. In 
the past, the use of closed-bomb burning rates and a best estimate of 
projectile resistance-to-motion were manipulated until satisfactory 
simulations were achieved; future models will require experimentally­
determined inputs. Thus, there is a need to quantify resistance to 
projectile motion, or as we will identify it here, resistive pressure. With 
a measurement of the projectile linear acceleration as a function of time 
and with an accompanying measurement of the gas pressure acting as the 
forcing function on the projectile, a quantification of the resistive 
pressure can be made. The force balance equations for determining this 
resistive pressure are determined from Newton's second law of motion, as 
shown in Equation 1. 

F m • a 
where F = Force acting on the projectile 

m = Mass of the projectile 
and a= Acceleration of the projectile. 

The forces acting on the projectile in a gun firing are given by 

F = (P - P )A 
b f 

where Pb = Pressure acting on base of the projectile 

Pf = Engraving and resistive pressure 

and A = Cross-sectional area of the bore; 

w therefore, F = rn • a = (P - P )A and rn = -
b f g 

or P = P - (~ • !) 
f b g A 

1 P. G. Baer> and J. M. Fronkle., "1he Simulation of Inter>ior> Ballistic 
Per>for>mance of Guns by Digital Computer> Pr>ogrom.," Ballistic Resear>ch 
Laborotor>ies Repor>t No. 1183., December> 1962. 

(1) 

(2) 

(3) 

2J. M. Fronkle., "Inter>ior> Ballistics of High-Velocity Guns., E:r:per>imental 
Pr>ogr>am-Phase I.," Ballistic Resear>ch Laborotor>ies Memor>andum Repor>t No. 18?9., 
November> 196?. 
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where w = Projectile weight 
and g = Acceleration due to gravity. 

From the LaGrangian correction, base pressure (Pb) can be reasonably 
calculated from the measured breech pressure (P) by the expression, 

(4) 

where c == Propellant weight. In all our tests, the pressure gage in 
the chamber adapter was used for calculating Pb. 

The measured, onboard acceleration calculated from combining Equations 3 and 
4 is given by 

g.P.A 
a = ""w7( 1:--+:---c~) w 

(5) 

2w 

Assuming no engraving and frictional losses (Pf == 0), calculated no-loss 
acceleration (a'), as shown in Equation 6, must always be larger than 
onboard measured acceleration; otherwise the accelerometer is inaccurate. 

g.P.A a ' = _ __.::::__.;,...._;.. __ 
w (1 + ~w) 

(6) 

Fundamental to the development of apparatus for taking measurements 
cited above are cost, ease of operation, and versatility. We conceived of a 
short-length howitzer with just enough in-bore travel to permit measurement 
of maximum chamber pressure and projectile motion during engraving and early 
travel over the total spectrum of standard ammunition charge increments 
used. Previous investigators3,4,5 have used a variety of techniques 
including our preferred technique of hardwire coupling to the projectile. 
Thus, the method is not new, but our variation is unique and innovative. We 
elected to use the modified howitzer for the following reasons: 

t Reduced gun tube length decreases muzzle velocity by 60 percent at 
the top zone, making projectile recovery easier, if required. This 
facilitates retrieval of projectile-borne instrumentation. 

3J.W. Evans, "In-BoPe MeasuPement of FPojeetile AeeelePation and Base PPessuPe 
Using an S-Band TelemetpY System," Ballistie ReseaPeh LaboPatoPies MemoPandum 
RepoPt No. 2562, DeeembeP 19?5. 

4w.P. MoPP~, '~ HaPdWiPe Teehnique foP ExtPaeting Data fpom a PPojeetile 
DuPing In-BoPe EnViPonments," HaPPY Diamond LaboPatoPies, May 19?2. 

5w.D. CPaig, "The Development of a "HaPd-WiPe 11 Teehnique fop Obtaining In-BoPe 
Data, 11 NWL Teehnieal Reporl TR-3060, NovembeP 19?3. 

' 
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• As designed, the short length of the gun barrel allows the nose of 
the projectile to protrude from the gun barrel when the projectile 
is seated. Since it is easily accessible, it makes the 
instrumentation links easier to accomplish. 

• To keep instrumentation simple, we elected to use a hardwire 
technique, directly coupling the transducer to the recording 
system. This is not new but the reduced tube length allowed the use 
of a simplified method for accomplishing this. Telemetry could just 
as readily be used, but would be more expensive. 

• The short-barreled howitzer eliminates the need for expensive, wire­
collecting scoops because of the abbreviated travel. Other 
experimenters have used such scoops with success over the first 
several feet of travel in a howitzer. 

II. TEST WEAPON 

The modified 105-mm, M2A2 Howitzer tube used for examining projectile 
performance during early motion and the method for attaching the tube to the 
recoil mechanism in the M101 Towed System were conceived at BRL. The actual 
design and fabrication were accomplished by personnel at the Ordnance 
Engineering Section, Material Testing Directorate, Test and Evaluation 
Command, Aberdeen Proving Ground, MD. 

The howitzer was modified so that the recoil mechanism, breech ring and 
block, and the short howitzer tube could be assembled and fired with recoil 
occurring in the normal way. Modifications were also necessary to insure 
that the muzzle position of the short howitzer tube would approximate that 
of the unmodified tube. If the short howitzer tube had been placed in the 
unmodified system, the muzzle position would have been between the recoil 
cylinders. The high muzzle gas pressure and temperature released into this 
section of the recoil mount would likely cause serious damage to either the 
cylinders or related mechanisms. 

The modification was accomplished by sectioning the M2A2 Cannon tube as 
shown in the sketch in Figure 1. The tube was cut into three parts as seen 
in the top view, and reassembled as the modified tube shown schematically in 
the bottom view of the figure. Section B was threaded to permit it to be 
attached to the carriage at the forward hoop. An adapter, D, welded to the 
B section, permitted the shortened howitzer tube, A, to be fixed to the 
carriage and recoil mechanism. The remaining section, C, was discarded. 
With the cannon assembled in this fashion, it would be impossible to load 
the projectile and cartridge case. Therefore, Section B had the rifling 
removed and the inside diameter expanded to allow free passage of the 
projectile and cartridge case into the breech. Section A was further 
modified by machining a pressure gage port 38 em from the Rear Face of the 
Tube (RFT). Strain patches were cemented to the outside surface of the 
howitzer tube at positions located 38.4, 41.5, 46.0, and 62.5 em from the 
RFT to measure axial and hoop strain, if required. Four views showing the 
mechanical modification to the M2A2 Howitzer tube are included as Figure 2. 
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Figure 1. Schematic Diagram Showing Sectioning of M2A2 Tube. 
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Figure 2. Modified M2A2 Tube Mounted in MlOl, Towed System. 
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III. TEST PROJECTILE 

The 105-mm, HE, M1 projectile was used for testing the hardwire 
instrumentation linkage. All projectiles were modified to accept a PCB, 
Piezotronics, Inc., accelerometer mounted in the base of the shell casing 
(Figure 3). A 5/32-inch (0.06-cm) hole was drilled in the base of the shell 
and tapped for a 10-32 UNF-2A thread. This hole was also spotfaced to a 
1. 3-cm diameter on the inner surface. To protect the projectile against 
intrusion of the propellant gases, the hole was subsequently welded shut 
leaving sufficient threads exposed on the interior of the projectile to 
mount the accelerometer. Additional protection to the accelerometer was 
provided by a steel cap inserted to isolate the transducer from the effects 
of the wax fill during setback • 

Figure 3. Modified Projectile and Components 

The fuze cavity for this 105-nun HE, M1 is threaded with standard 2-12 
UNS threads used to accept most of the standard fuzes in the artillery 
projectile inventory. Larger projectiles, such as the 155-nun and 203-mm 
sizes, are shipped with the fuze cavity sealed with a lifting plug (Ordnance 
Corps Dwg 74-14-42A) for ease in handling the heavier weight shell. By 
machining off the ring, these lifting plugs provide an inexpensive, ready­
made closure that can be used in hardwire data acquisition from the 105-mm, 
HE, M1 Projectile. A cross-sectional view of a modified lifting plug is 
shown in the sketch of Figure 4. The output from the accelerometer (not 
shown) is fed via a multi-stranded wire through the center array of 
components in the modified lifting plug. Note that the wire is looped and 
tied to a soldering lug in the base of the plug to provide an anchor and to 
prevent pulling the lead free of the accelerometer during tension loads 
applied in subsequent set-up and handling. To provide the proper circuit 
continuity in this single-lead arrangement, a copper-clad, fiberglass disc 
is cemented with epoxy to the outside, flat, machined surface of the lifting 
plug, the surface that normally would consist of the lifting ring portion of 
the plug. A modified brass screw and washer, and a brass and fiber washer, 
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arranged as shown to provide the proper insulation, make up the remaining e 
components. The output lead, with insulation stripped off for a length of 
about three meters, passes through the modified brass bolt. This base lead 
is soft-soldered to the bolt at each end and the solder is flowed over the 

\_\_
FIBER 

WASHEII 

MODIFIED 
BRASS 
SCREW 

SOUlER I.UO 

Figure 4. Modified Lifting Plug Components 

copper face of the disc. The bare wire then has a contact surface as it 
collapses during the short, in-tube travel of the projectile. The circuit 
is completed through the gun tube and projectile metallic rotating band. An 
assembled plug and an exploded, disassembled view of the modified plug 
showing the various components and their orientation is shown in Figure S. 

.• ~en 

··---~---.... ___ _ 
Figure 5. Exploded, Disassembled View of Modified Lifting Plug 
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IV. TEST AMMUNITION COMPONENTS 

The 105-mm, Howitzer, M2A2 uses the M14 series cartridge cases. For 
the test setup used here, the M14 brass case was utilized. To minimize 
orientation problems with aligning a pressure-port access hole in the 
cartridge case, the cases were cut back 11.4 em. The cases were also 
drilled and spotfaced at the base to accept a strain-type pressure 
transducer6 • Experience has shown that the brass case has a longer life and 
affords better obturation when shortened than does the Ml4Bl, steel case, in 
tests of this type. 

The M28B2 Primer is a standard component for use with the M67 
Propelling Charge. Early testing with this percussion primer gave ignition 
variability that was incompatible with our Ballistic Data Acquisition System 
(BALDAS). The cause of the variability was primarily due to the solenoid­
actuated lanyard used to activate the firing lock. To overcome this, a 
modified version of the M28B2 was used. The percussion element was replaced 
with an electrically activated initiator that allowed the primer to be 
triggered with far more consistency insofar as our data recording equipment 
was concerned. The use of this initiator does not change the propelling 
charge behavior. 

For all firings in this program, the M6 7 propelling charge was used. 
All ammunition components were maintained between 21-24°C for a period of at 
least 24 hours prior to testing • 

The sketch in Figure 6 shows the relative position of the ammunition 
and instrumentation components, with the projectile seated in the origin-of­
rifling of the shortened tube. The field experimental setup in the modified 
cannon with the signal lead held in position is shown in the photograph in 
the bottom view of the same figure. 

V. DATA ACQUISITION AND PROCESSING 

A PCB Piezotronics, Inc., high-shock accelerometer (Model 305A) was 
used for the acceleration measurements. This device contains a very small 
seismic mass pre loaded against a quartz element by a thin-walled sleeve. 
This transducer also contains a p-channel, MOSFET, source follower that 
functions as an impedance converter. This arrangement provides the 
transducer with a nominal, 100-ohm, output impedance. This transducer was 
selected for this low-impedance characteristic to help eliminate cable 
length, cable contamination, and humidity problems that generally plague 
high-impedance devices. The relatively high output level also improved the 
signal-to-noise ratio. Current requirement for this device is 2 
milliamperes at a quiescent voltage of 11 volts. The output signal is AC­
coupled from the power lead, requiring only a two-wire transmission line to 

6 E.V. ClaPke, Jp. and R.W. Deas, 'Uethods fop Installing the IBL Miniatupe 
PPessuPe Gage, " BallistiC! ReseaPC!h LabopatoPies Tee!hnie!al Note No. 1662, 
August 1967. 
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AXIAL & 
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Figure 6 . Experimental Set up. 

15 

• 



• 

the signal conditioning instrumentation. 

Since it was planned to manipulate the data from the accelerometer with 
that of the pressure transducer to measure the resistive pressure, the 
analog data paths were made as identical as possible. To help accomplish 
this, a PCB ~del 109A Pressure Transducer was used since it also has a 
similar, built-in source follower circuit. The rise times of the two 
transducers were of the same order of magnitude but had different discharge 
time constants. This was not a problem since the event time was short and 
both transducers could follow it. 

In order to keep the data reduction process compatible with existing 
hardware and software, a standard format was used. This format places five 
linear calibration steps of fifty-milliseconds duration just prior to the 
analog event. Thris analog calibration and data are digitized in real time 
and stored in the core memory of a PDP 11/45 mini-computer accommodating 
from two to sixteen channels of data in the 24K storage. Analog-to-digital 
conversion rates vary between four and twenty-two microseconds per sample, 
depending on the number of channels handled. The analog signals are 
simultaneously recorded on FM, magnetic tape, providing a source for post­
firing digitization if required. Since the data are permanently stored on 
digital magnetic tape, the data can be recalled for further processing at 
any time. 

A simplified diagram of the transducer and signal conditioning circuit 
is shown in the top view of Figure 7. The transducer crystal is shunted 
with a capacitor that adjusts the sensitivity to the transducer. The 
resistor biases the gate and removes any long-term, thermal-induced charge 
on the crystal element. The transducer is connected to the piezotron input 
of a dual-mode amplifier (Kistler Model 504E4). This charge amplifier has a 
built-in constant current source that biases the transducer. A parallel 
input circuit, with an external calibration capacitor, is connected to the 
staircase calibration source. The amplitude of the maximum calibration step 
is selected to be equal to the maximum expected output to be seen during the 
event. The dual-mode amplifier is adjusted using the range selector switch 
and sensitivity potentiometer to the desired level. Since this amplifier 
inverts the signal, an inverting data amplifier is needed to establish the 
proper polarity and off-set to the signal required by the recording system. 

The analog system to measure the r e sistive pressure is shown in the 
bottom view of Figure 7. This technique results in the analog differencing 
of the accelerometer and pressure transducer output signals with a system 
that is properly adjusted, calibrated, and scaled. The maximum calibration 
voltage for the pressure transducer is obtained from the relationship: 

(7 ) 

where 

Vp = Top calibration step voltage (volts) 

P = Maximum expected pressure (MPa) 

Kp = Tra nsducer sensitivity (MPa/volt) 
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The maximum accelerometer calibration voltage is selected to scale the 
acceleration term in the force balance equation (Equation 1) so it will have 
the same units and same magnitude as the pressure term. This is done by 
first assuming that the system is frictionless and then calculating the 
maximum possible acceleration for the expected applied base pressure using 
Equation 6. 

The top step voltage for the accelerometer calibration output is 
likewise selected from the relationship 

(8) 

where, 

Va = Top calibration stop voltage (volts) 

a = Maximum expected acceleration (Kilo g's) 

Ka = Accelerometer sensitivity (Kilo g's per volt) 

The outputs of the two dual-mode amplifiers ( Q) are then adjusted for 
compatibility with the recording device and the analog voltages of the two 
staircase calibrations are adjusted for the same amplitude. The two output 
signals are then differenced using a differential amplifier. This output is 
interrupted during the calibration cycle for insertion of the voltage 
calibration staircase. The resistive pressure calibration is obtained by 
dividing the pressure calibration by the gain of the differential amplifier. 

VI. RESULTS 

The short-barrelled howitzer has been successfully test-fired at three 
different rates-of-loading using the Zones 1, 5, and 7 levels of the M67 
Propelling Charge. No adverse effects to the recoil mechanism have been 
observed due to the blast effects of the higher-than-normal "muzzle" 
pressures that develop as the result of the greatly-reduced tube length. 
Recoil displacement with the reduced tube mass has not exceeded 56 em. The 
use of the modified lifting plug as an inexpensive method of obtaining a 
hardwire data link has also proven highly successful and inexpensive. Lower 
velocity launch and the ability to recover the transducers for reuse has 
also been achieved by firing the projectiles into a sand-filled, steel 
trough five meters forward of the howitzer. 

All pertinent data for each of the firings are shown on Table 1. 
Chamber pressure, onboard acceleration, and doppler muzzle velocity were 
experimentally determined; base pressure was computed from chamber pressure 
using the LaGrangian correction for pressure gradient. Peak engraving 
pressure was taken from the plots of "Calculated Resistive Pressure versus 
Displacement from Accelerometer (resistive pressure-displacement)" 
calculated from chamber pressure and onboard acceleration data (Figures 8-
24). The "no-loss" onboard acceleration was computed from Equation 6. 
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TABLE 1. Projectiles with Guilding ~~etal Rotating Bands 
~ -~-~ -- ~-~--- ~---~--~~ -~---~- .. ~-- -~ ---·-·---··--···· -----------~-----

"No-Loss" 
On board Accelera-

Round Projectile Chamber Base Acceler- tion (Cal-

Re 
Peak Pr 

Engraving te 

. . (*2) s1st1ve 
essure Af-
r 20 em of Muzzle 

(Code) Wt. Pressure Pressure at ion culatecl Pressure Travel Velocity 
Number Zone (Kg) (MPa) 

1 (T20) 1 14.9 52.1 
2 (B21) II II 48.4 
3 (822) " II 50.4 l 
4 (823) f! II I 57.0 
5 (824) II II j_ 56.3 
6 (B25) " II 56.8 • ___ .,w., 

~ . 
Avg 14.9 53.5 Std Dev 0 3.7 

(MPa) (Km/s/s) (Km/s/s) 

51.6 24.9 31.3 
47.9 23.9 29.1 
49.9 27.9 30.3 
56.5 29.9 34.3 
55.6 29.9 33.7 
56.0 31.9 33.9 
. ··- ··--·- ~ ~ 

52.9 28.1 32.2 
3.6 3.1 2.0 

(fvfPa) 
·--~~----.. 

32.5 
26.1 
24.5 
29.8 
29.8 
28.0 ,_ 
28.4 
2.9 

(MPa) (m/s) 

8 
8 
4 
4 

7 (*3) 
1 

5.3 
2.7 

123.7 
131.1 
134.7 
134.7 
137.8 
134.7 

132.8 
4.9 

-----------·------------+ 
1 (Tl3) 5 14.8 101.8 
2 (Tl4) II 14.7 96.9 
3 (TlS) II 14.5 100.0 
4 (B39) " 14.7 99.4 

Avg 14.7 99.5 

100.0 55.9 
94.6 51.9 
98.2 51.9 
98.2 51.9 

97.8 52.9 

61.1 l 32.3 
57.8 24.7 
60.4 32.3 
61.2 40.1 

--"--~-~------~-- ----~ --~--

60.1 32.4 
~"··-

1(*3) 

11 
14 
23 

197.5 
191.1 
197.5 
205.6 

12.2 197.9 
Std Dev 0.1 2.0 2.3 2.0 1.6 6.3 9.1 (5.9) 

230~r 222.~~~~Tl 1 (TlO) 7114.7 136.6 
2 (818) f! 14. 8 237.6 227.4 133.7 138.9 
3 (Bl9) f! 14. 7 232.6 224.3 121.8 137.9 
4 (840) " 15.1 246.9 236.6 120.8 141.6 

------~------~ ------- .. l .. ' . . ' . 
Avg 14.8 234.8 227.6 119.6 C*1p8.8 

(125.4) 
Std Dev 0.2 10.3 6.4 13.1 2.1 

. 2) 

., ·~·' .. 

68.3 
21.3 
22.2 
25.2 I 

34.2 (*1) 
(22.9) 
22.7 

- (2. 0) 

57(*4) 
16 
30 
25 

32 

17.6 

314.5 
303.9 
314.8 
299.3 

308.1 

7.8 

(*1) 

(*2) 

(*3) 
(*4) 

Average and standard deviation for four and three rounds. Round l(TlO) had an abnormally 
celeration compared to peak pressure that affects calculated peak engraving pressure. 
Average resistive pressure was taken after 20 em of travel which was close to muzzle exit 
loss of signal. · 
Rapidly changing (both increasing or decreasing) downtube resistive pressure. 
Value taken at 15 em of travel since data beyond this point was lost. 

- -

... j 
low peak ac-

and prior to 



A. Zone 1 Series 

Round-by-Round data for the Zone 1 series are shown in Table 1. The 
plotted data for Round 5(B24) in Figure 8 illustrate pressure and 
acceleration data typical of all six rounds in the series. Both the chamber 
and base pressure versus time plots (upper right and left) show an increased 
pressure decay when the projectile exits the short tube, an event 
corroborated by loss of signal from the onboard accelerometer (center 
plot). Initial projectile motion and band engraving occurred between 8 and 
15 ms when the accelerometer output was responding in a wavering fashion. 
After engraving there was a rapid increase in gage output as the projectile 
began to accelerate down the tube. As the projectile velocity approached 
its maximum, .there was a decrease in acceleration until the projectile 
exited the tube wherein the accelerometer signal was lost. Onboard 
acceleration ranged from 23.9 to 31.9 bn/s/s and was, in all cases, less 
than that calculated for a "no-loss" system. 

Calculated resistive pressure as shown in Figure 8 was plotted both as 
a function of time (bottom left) and as a function of. displacement (bottom 
right) obtained by integrating twice the accelerometer-time curve. The 
well-defined resistive pressure-displacement profile typical of all rounds 
in the Zone 1 series (Figures 9 thru 14) exhibits a large engraving pressure 
over the first 2-3 em of travel (approximately 1-3 times the rotating band 
width) followed by a greatly reduced frictional pressure over the downtube 
travel. 

B. Zone 5 Series 

Round-by-Round data for the Zone 5 Series are shown in Table 1. The 
plots of Figure 15 for Round 3(T15) are typical of pressure and acceleration 
data for all four rounds in this series. As in the Zone 1 Series, there is 
rapid pressure decay after projectile exit because the short tube length 
combined with the relatively high muzzle pressures leads to a fast tube 
emptying process. Initial projectile motion and engraving occurred between 
10 and 12.5 ms for this round as indicated by a rapid rise in accelerometer 
output followed by a dip in the output. There was not the wavering output 
as noted in the Zone 1 Series. After engraving, the profile was similar in 
most cases to Series 1. Onboard acceleration ranged from 51.9 to 55.9 
km/s/s. 

The well-defined resistive pressure-displacement profiles having a 
large engraving pressure followed by a much smaller resistive pressure were 
typical, in varying degrees, of all rounds in this series (Figures 16 thru 
19). Round 4(B39) had a large momentary loss of accelerometer transmission 
which calculated into a large peak in the downtube resistive pressure 
profile that was not typical of the experimentally-observed data. 

C. Zone 7 Series 

Round-by-Round data for the Zone 7 Series are shown in Table 1. The 
plotted data for Round 2(B18) in Figure 20 show typical pressure and 
acceleration data for three of the four rounds in this series. As in the 
Zone 1 and 5 series, pressure decays rapidly after the projectile exits the 
short tube. Initial projectile motion and engraving occurred between 8 and 
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9.5 ms for this round. A slight change in the slope of the acceleration­
time curve at 9.5 ms is the only indication of the engraving since rapid 
burning of propellant quickly accelerates the projectile, almost masking the 
engraving process. Peak acceleration varied from 101.9 to 133.7 km/s/s. In 
Table 1, an average and standard deviation are given for both four and three 
rounds. Round 1(T10) is excluded in the 3-round comparison since the 101.9 
km/s/s seems to be well below that expected in comparison to its chamber 
pressure level. In all cases, the calculated "no-loss" acceleration was 
larger than the experimentally-measured values. 

As shown in Figures 21 thru 24, no round in the Zone 7 Series had the 
well-defined profiles previously indicated for Series 1 and 5. In three of 
the four cases (Round 2(T10) being the anomaly), there was a reasonably good 
engraving pressure. As the engraving pressure decreased, it quickly reached 
a minimtm1 level after which it began to increase with increasing travel 
rather than maintaining the lower level as was the case in the Zone 1- and 
5- series firings. This increasing resistive pressure with travel occurred, 
in varying degrees, for all four rounds in the series. The resistive 
pressure-displacement profiles for Round 1(T10) is highly suspect since the 
peak acceleration value for the onboard accelerometer was much lower than 
would be expected for its corresponding chamber pressure. 

VII. CONCLUSIONS 

A simple and inexpensive technique for the instrumentation and 
monitoring of an accelerometer onboard a 105-mm howitzer projectile has been 
demonstrated. The technique employed in this program has direct application 
for work anticipated on a 155-mm, instrumented projectile fired from a 
short-barreled howitzer. 

Onboard acceleration-time measurements taken at three rates-of-loading 
(Zones 1, 5, and 7) for a guilding metal-banded projectile were successful 
in that the onboard data was in the correct range based on peak pressure 
measurements in the howitzer chamber. The average peak engraving pressure 
for all three zones was similar being 28.4 MPa for the Zone 1 Series, 
32.4 MPa for the Zone 5 Series, and 33.2 MPa for the Zone 1 Series. After 
omitting Round 1(T10) from the Zone 7 Series since it gave an unusually low 
value of peak acceleration, the peak engraving pressure drops from 34.2 MPa 
to 22.7 MPa. 

The average downtube resistive pressure profiles for the three zones 
differed considerably. Both Zone 1 and Zone 5 Series dropped rapidly from 
their peak engraving pressure values to a consistent low level until shot 
ejection. For the Zone 7 Series, all rounds except Round 1(T10) which had a 
low peak acceleration, dropped somewhat from their peak engraving value but 
then began to increase with increasing travel down the tube. In two of the 
four rounds, the resistive pressure near the muzzle was higher than the 
initial engraving pressure for the round. This was surprising since we 
expected with increasing projectile in-tube travel, the resistive pressure 
profile to be always less than the peak engraving pressure. 

Useful measurements of the behavior of the projectile during in-bore 
travel are necessary to determine the effects of this severe environment on 
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the system. Refinements in the method of calibrating the accelerometers are 
a requirement for transmitted data to accurately reflect the dynamic 
conditions onboard the projectile. 
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